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ABSTRACT

This paper deals with the numerical solution of boundary value problems

of ordinary differential equations posed on infinite intervals. The solution

of these problems proceeds in two steps. The first is to cut the infinite

interval at a finite, large enough point and to insert additional, so called

asymptotic boundary conditions at the far (right) end; the second is to solve

the resulting two point boundary value problem by a numerical method, for

example a difference scheme. In this paper the Box-scheme is investigated.

Numerical problems arise, because standard algorithms use too many grid points

as the length of the interval increases. An 'asymptotic' a priori mesh size

sequence which increases exponentially, and which therefore only employs a

reasonable number of meshpoints, is developed., Investigating the

conditioning of the (linearized) Box-schemewe find that the solutions can be

obtained safely by the Newton procedure when partial pivoting is employed.
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SIGNIFICANCE AND EXPLANATION

This paper deals with the numerical solution of boundary value problems

of ordinary differential equations posed on infinite intervals. These

problems have the following form. We look for the solution of a system of

ordinary differential equations which is defined on the interval [I,-]

which fulfills a certain continuity requirement at infinity and some boundary

conditions at t = 1.

Such problems occur in laminar flow theory, in fluid dynamical stability

theory, and in quantum mechanics.

For the numerical solution we proceed as follows. First we cut the

infinite interval at a finite, large number t = T and impose additional, so

called asymptotic boundary conditions at t - T in order to obtain a 'finite'

two point boundary value problem. Then we solve this problem with a finite

difference method. The difficulty arising frequently is that the number of

mesh points has to increase rapidly as T + - in order to preserve a certain

accuracy when standard algorithms are used.

In this paper we derive a sequence of mesh-sizes which increases

exponentially. The amount of computing necessary is kept reasonably low.

i.. - r. .
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THE NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS ON 'LONG' INTERVALS

Peter A. Markowicht and Christian A. Ringhofer
t t

1. Introduction.

In this paper the numerical solution of boundary value problems on infinite intervals

of the form

(1.1) y' - taf(t,y), 1 4 t < , ) 0

(1.2) b(y(1)) = 0

(1.3) y e C(f1,=]) :<==> y e c([1,w)) and lim y(t) - y(-) exists

n+1 n n k
is considered. Here f:R Rn , b:R + R where generally k < n holds because (1.3)

furnishes another set of boundary conditions. f fulfills certain continuity properties at

af
infinity which will be defined later. We assume that the Jacobian - (-,y(f)) has no

eigenvalue on the imaginary axis.

For a > -1 Equation (1.1) has a singularity of the second kind of rank

a + 1 at t - . But we disregard the practically unimportant case -1 < a < 0 for the

following.

Problems of this kind often occur in fluid dynamics (boundary layer theory), quantum-

mechanics and electronics. For applications see Markowich (1980ab), de Hoog and Weiss

(1980a), McLeod (1969) and Schneider (1979).

For the numerical solution we proceed as follows. First the infinite interval is

substituted by a finite but large interval and n-k additional, so called asymptotic

boundary conditions which reflect the asymptotic behaviour of the solution y , are imposed

at the right (far) endpoint T . We obtain two point boundary value problems of the form

(1.4) x' = taf(t,x), 1 4 t( T

(1.5) b(x(1)) = 0

(1.6) S(T)x(T) = y(T).

t
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the Austrian Ministry for Science and Research. This material is based upon
work supported by the National Science Foundation under Grant No. MCS-7927062.
t+Supported by a Research Grant from the Austrian Forschunqsf6rderungsfond.



The condition (1.6) has to be dhosen such that

(1.7) ly - XI[1,T] ' 0 as T +

holds and its construction is described in do Hoog and Weiss (1980b), Lentini and Keller

(1980) and Markowich (1980b).

The two point boundary value problem (1.4), (1.5), (1.6) now has to be solved by an

appropriate numerical method, for example by the Box-scheme which has the form
(1.) i+l - i  a

(1.8) + 1/2f (t+/2 1/2 1x,+ + x i)), i - 0(1)(N-1)

(1.9) b(x0 ) - 0

(1.10) S(T)x - y(T)
n hi

where t0 - 1 < tI < ... < tN_ 1 < tN - T , ti+ I - ti + hi , ti+I/2 - ti + holds.

It is clear that the mesh-size selection is, especially for these problems, very

important since the amount of labor will be very large for long intervals and bad (too

small) mesh-size choices. Even well working adaptive codes, which assume a relation of the

form

(1.11) max h /min h ( const

i i
and whose convergence estimates are formulated in terms of max hi , would eimmploy too

i
many meshpoints in order to admit a given bound for the global error. Moreover the codes

which employ adaptive mesh refinement (see Lentini and Pereyra (1977)) solve first with a

coarse grid in order to do local error estimation. However if T is large even a coarse

grid implies a lot of computational labor and is therefore not suitable.

In this paper we use the asymptotic form of the solution of (1.1), (1.2), (1.3) in

order to construct an asymptotic a priori mesh. The term asymptotic has to be understood

in the following sense. In an interval [1,y] , where y solely depends on the

'infinite' problem either constant meshsizes or more sophisticated algorithms like

equidistributing meshes (see Lentini and Pereyra (1977)) have to be used and in [y,T] the

asymptotic mesh is employed.

-2-
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It turns out that mesheizes which increase exponentially can be used since our

assumptions guarantee that y(t) + y(-) exponentially. For the Box-scheme it will be shown

that the number of grid points which is necessary in order to achieve a total accuracy

0(c) (total accuracy refers to the difference between the 'infinite' solution y(ti) and

the discrete approximation xi) equals O(E- 1/2 ) . For this a suitable T - T(E) has been

taken. Moreover it will be shown that the Newton procedure for (1.8), (1.9), (1.10) with

theme exponentially increasing stepsizes converges quadratically from a domain of starting

values which does not shrink to 4 as E + 0 . We also show that the condition number of

the (linear) Box-scheme is an 0(c- 1/2 ) so that the linear system can be safely solved by

partial pivoting. Therefore, in the nonlinear ca.e, the Newton procedure can be safely

applied.

Of course, no fully impliciL difference scheme (like the implicit Euler scheme) should

be used for the integration of (1.4), (1.5), (1.6) since in general the fundamental matrix

of the linearized problem (1.4) contains exponentially increasing columns which are scaled

down by the boundary condition (1.6). But nevertheless this would cause instabilities

during the integration when using large meshsizes. Similar instabilities can occur in the

case a > 0 when using the teapezoidal rule.

Higher order stable methods can be constructed by polynomial collocation at Gaussian

points and will be analyzed in a subsequent paper.

Another way to solve problems of the kind (1.1), (1.2), (1.3) is to transform the

'infinite' problem by a transformation t = s- , a > 0 to the interval 10,1] and to

employ difference methods at this constant interval. Methods of this kind have been

investigated by de Hoog and Weiss (1979). However this way of proceeding has the

disadvantage that a singular problem (the right hand side of the equation is not defined

in s - 0) has to be solved and therefore the obtained convergence estimates are not very

strong. Another disadvantage is that many physical problems are actually posed on an

infinite interval (for example in boundary layer theory) such that a 'direct' solution is

desirable.

-3-



II
We remark that there is a close connection to singular perturbation problems since the

t-1 1
transformation a - , " - takes (1.4), (1.5), (1.6) into

(1.12) z(s) - (s+) f(- , Z(S)), 0 4 S C 1 , ;) 0£

(1.13) b(z(O)) - 0

(1.14) 8(- + 1)z(1) - 0.
C

(Note that lim f(+ ,z) -f(,z)).
£C+0

The already developed mesh-size sequences for singular perturbation problems cannot be

applied since the linearization of the right hand side of (1.12) does not generally have a

series expansion in powers of £ uniformly in 0 4 s - 1. (see Ringhofer (1981)) since

for most practical problems
af A(t

- i ,

(1.15) -(t,y) Ai(y)t t +
By i=0

holds.

Recently Ascher and Weiss (1981) came up with a meshaize sequence for linear constant

coefficient singular perturbation problems (a - 0) which is (as a formula) equivalent to

ours, however they apply it in the layer of thickness 0() which corresponds to the

interval [1,y] in our long interval case. Outside the layer they use a uniform

(independent of ) mesh fine enoujh to approximate the solution of the reduced problem

(c - 0) well. The difference comes from the fact that the solution of the singular

perturbation problem decays exponentially to the solution of the reduced problem within the

layer while in the infinite interval case exponential convergence holds, for a + 1.

Kreiss (1975) used a similar approach to construct meshes for singular perturbation

problems.

This paper is organized as follows. Chapter 2 gives a short summary of the theory of

boundary value problems on infinite intervals end their 'finite' approximation, in Chapter

3 stepsize sequences are developed for scalar initial value problems, Chapters 4,5 deal

with linear boundary value problems and in Chapter 6 nonlinear problems are dealt with. In

Chapter 7 the results are gathered and put into algorithmic form.

-4-
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2. Boundary Value Problems on Infinite Intervals and their Approximation by 'finite'

Interval Problems - A Summary

We consider boundary value problems on infinite intervals of the following form

(2.1) y' - tN(t)y + t f(t), 1 4 t < -- , >0

(2.2) By(l) - a

(2.3) y e C((l1,1)

where the nxn-matrix A e C([1,-1) and f e C(1,.]). B is a matrix whose rank is (in

general) less than n since (2.3) furnishes another set of boundary conditions.

Let us first consider the case where A(t) E A . A shall have the Jordan form J

obtained by

(2.4) A = E J E
-
1

We assume that J has the block form

(2.5) J = ]-
J }r-

r r

where the r+ x r+ matrix J + has only eigenvalues with positive real parts and the

r x r - matrix J- has only eigenvalues with negative real parts. Imaginary eigenvalues

will be excluded for the following. The diagonal projection D+, D_ are defined by

[1

(2.7) D = [ r

The general solution of (2.1) (with At) A) and (2.3) can now be written as

(2.8) y(t) = E¢(t)L j + E(RIE -f)(t), { 6 C -

A'.
,. _ . • . .. - -.. . ,-
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where

(2.9) Ott) =exp(- j t a+l

is the fundamental matrix of the transformed problem

(2.10) U, - tnJU + tF-1 f(t)

where Eu - y holds and (HE- f)(t) is a suitable particular solution of (2.10) which can

be taken as

(2.11) (Hqi(t) - 0(t) fLt D4 ~ (s)s a ~s+0t ft0 _- l(s)s ag(s)ds

for some y > 1. This operator has been analyzed by de Hoog and Weiss (1980a,b) and

Maricowich (1980a).

H has the following properties

(2.12)(a) :Cy])+ C([y,'1)

(2.12)(b) USE 'C c

where 1-1 l']denotes the max-norm on y,] reap. the associated operator-norm. The

constant c is independent of y

Markowich (1980a) has shown that if

(2.13) f(t) = F(t)exp(- P'i ta 1 ), F e L ([1,.]) nl c((1,oo)l

holds with U>Xmi > 0 whr mnis the smallest modulus of the real parts of the

eigenvalues of A which are in the left half plane, then

(2 4 y(t)l 4 const.(NFU + ICI)tOt)[1  ]I C

4 const.(%PI 1 I1)t (r1(~)exp(- mi t )
(1a01

holds. r is the largest dimension of a Jordan block associated with an eigenvalue of A

with real part -X i

The boundary value problem (2.1), (2.2), (2.3) with A(t) S A is uniquely soluble for
r_

all 0 e R , f e cU1,wi) if and only if the r _x r matrix

(2.15) BEO(I] is nonsingular.

Here B is assumed to be a r_ x n-rnatrixc. So the continuity requirement (2.3)

furni shes r+ linearly independent boundary conditions.I (2.15) implies that IEI 4const.I8U holds.

-6-



The variable coefficient case A~t) A is treated by a perturbation approach (see de

Hoog and Weiss (1980a,b) and Markowich (1980a,b)). A(a) now plays the role of A *We

assume that AC-) has the Jordan form J given by (2.5). Then we can show (see de Hoog

and Weiss (1980a,b)) that

(2.16) y(t) =E*-(t)E + '*(- if)(t), E e c

where t(t) is an n x r -matrix defined by

for y sufficiently large. For t e [1,13 *_(t) can be continuously extended. E*I(E f)

is a suitable particular solution of (2.1) .The boundary value problem (2.1), (2.2),
r-

(2.3) is uniquely soluble for every a e Rt f e c( [,-]) if and only if the

r- x r -matrix

(2.18) BE*-(I) is nonsingular.

fMarkowich (1980a) has proven the estimate

(2.19) Iy(t)3 4 const (EI 1  + E0)exp(- mn t a

for t > t .6> 0 can be chosen sufficiently small if t is large.

Nov we briefly consider nonlinear problems of the form (1.1), (1.2), (1.3).

From (1.1), (1.3) we conclude that

(2.20) f(-,y(-)) - 0

has to hold. We assume that the roots y(.e) of (2.20) are isolated and take one

particular root y C)for the following. Moreover f(t,y() shall fulfill (2.13).

Defining

C (taK {(t,y) e 30+ It ;P t 1 Y - Y* (-)I 1 4 K

we assume that f, f y e c1 ip(C K(1,y (.) for a sufficiently large Kc . We also assume

that the boundary value problems (1.1), (1.2),. (1.3) has an isolated solution, i.e. the

linearized problem is nonsingular.

Now let J be the Jordan form of f y(-n,y*(a.)) obtained by

f (.y())= EJE-

and let J fulfill (2.5) such that D+' D_, are defined as in (2.6), (2.7). Then mi

:1 -7-



is defined for J as above and *(t), *_(t) are as in (2.9), (2.17) with f (t,y ())- y

substituted for A(t). Markowich (1980a) showed that

(2.21) ly(t) - y*(-)l ( const. lt (t)l 4 const. exp(- mm +1
a+1

The isolatedness of y now implies that

ab
(2.22) -L (y(l))*_()

is nonsingular. More information on the analysis of these problems can be found in the

above cited references and in Lentini and Keller (1980).

We want to approximate the 'infinite' problems (2.1), (2.2), (2.3) by 'finite' two

point boundary value problems of the form

(2.23) x, = tA(t)x + tfr(t), 1 4 t 4 T , T >> I

(2.24) Bx(1) =

(2.25) S(T)x(t) I y(T)

Since (2.24) is a boundary condition of rank r_ we assume the S(T) is a

r+ x n-matrix. The question that arises immediately is how to construct an asymptotic

boundary condition S(T) such that

(2.26) Iy - XI[1,T ] + 0 as T +

and the order of convergence should be as fast as possible.

A complete theory of this kind can be found in de Hoog and Weiss (1980a) and Markowich

(1980b) and therefore we only give excerpts which will be needed in the sequel. The basic

idea is that the boundary condition (2.25) has to scale down all solution components of

(2.23), which do not decay exponentially.

We assume that (2.18) holds. A possible choice is

(2.27) S S S(T) = [I , 0]E -1 
y(T) = 0

+
It has been shown in the above cited references that this boundary condition implies

convergence in the sense of (2.26) and that for general y(T)

(2.28) Ny - x1 1,T) 4 constlSy(T) - y(T)I

holds. In general the admissibility conditions for a boundary condition S(T) are

(2.29) IS(T)I 4 const., T +

-8-



(2.30) I(S(T +])1- 4 const., T +
10

then (2.28) holds for the unique solution x of the 'finite' problem if T is

sufficiently large. y(T) = 0 is a natural choice for linear problems.

If f(t) fulfills (2.13) an estimate for the order of convergence is given by the

right hand side of (2.19). Moreover it has been shown that the choice (2.27) is optimal in

the sense that the actual order of convergence exceeds (2.19) for homogenous problems.

The condition (2.25) with S fulfilling (2.29), (2.30) and y(T) = S(T)y (=) can also

be used for nonlinear problems of the form (1.1), (1.2), (1.3) if the above stated

assumptions on f(t,y) and the solution y hold. (2.28) still holds for nonlinear

problems.

~-9-



3. The Scalar Case.

In this chapter we treat the simplest case, namely scalar initial value problems. The

aim is to construct step-size sequences for the Box-scheme such that the global error is

less than a prescribed accuracy regardless of the length of the interval of integration.

These step-size sequences will be used for the general boundary value problem case.

We consider

(3.1) y' - -Aty + tuf(t) , 1 ( t < , ) 0

(3.2) y() = y

where A - X1 + ix2 may vary in a compact subset a of {z e CIRez > 01

The Box- or centered Euler scheme for (3.1), (3.2) has the form

(3.3) Yi1i 2 1+ / 2 i+1 + y ) + ti+ 1/2 fi+ 1/2 ,i 0 , o y

where for hi > 0
hi

(3.4) (a) to t i+i - tt + hi , ti+ 1/2= ti + , i ) 0; (b) fi+ 1/2 = f(ti+ /'

holds.

We define

m 1 -h ta2 L
(3.5)(a) Yn, ' h) =11 t£ n gm ; Yn =1, n '

n,m A, 1+- a 1 n+1,nI-n + + 1/2

i-Iand for a sequence of complex numbers z (zj+I/jfi

i-h1 
+ 1

(3.5)(b) (H (X,tl h)z)i  = I I / Z+/ ( h) i I+

E=1 1 + X h t t+ /

and (H_(A,tih)z)I  0 where h - (h ) i0 is the sequence of step-sizes.

Using these definitions the solution of (3.4) can be written as

(3.6) = Y 0,i-1 (X
'
h)y + (H-(t0,h)f)i

1i-1
where f = (f 1 0 has been set.+ 1/2 J

-10-
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The local discretization error to 1/2 i+ 1/2 of the difference scheme (3.3) is defined

as
u ~~Y(t+ 1)-y(t)

(3.7) t a1/2 i+ h i A ti i (y(tI+ 1 ) + y(t)) - t+ f i > 0

where y is the solution of (3.1), (3.2).

The global error

(3.8) ei , y(ti) - yi

then satisfies the difference equation
(3.) +- ei - A ta / (e ei+a) + to1 0

i.1i 2i+ i 1+ 1/2i+ 1/2 i >0 , e o - 0

and therefore has the solution

(3.10) ei - (H_(,t 0 ,h)) i

with Z -= I -

In order to estimate the right hand side of (3.10) we need the following

Lemma 3.1. Let x for c - n,n+l,-..,m be complex numbers with Rex > 0 and

Ix i

Rex K x -const. Then setting 1 a, 0 for i ) 1
K b-i+1

m Ix I m I1-x1l
( 3 .1 1 ) 2 n II C+ 1 4+/

2 xK -1+1x I
1n I11+x I I-=C+ I

m Ix I C- I1-x II-x 2(3.12) ___(1 H

pplcatin oiLe-na I1. I imeiat y ied

holds.1

Proof: An easy calculation gives

, , , C ICI

11x12 412 1-xI

Substitution into the right hand sides of (3.11), (3.12) yields telescoping sums.

Application of Lemma 3.1 immediately yields

Lemma 3.2. Let f = l 1 ),. Then for every sequence h =(hX) with h > 0
'2 iIi



(3.13) I( (At ih)f) I 'const. max (if 1,1,(1 + hit' ,,)~~ L-I£.'r(1) (i-1) +2 2 £A 2

holds for i > I uniformly for X e n

Proof:

I (H_(,t ,h)f) I e

i-1 t! L t [ hh tt+12 2 h
acon mx (if 1/(1 + L'-1 h t + h, 1 /,h)I(1)(i-1) 2 2 X L+2) t1I 1+1/2 h ta 112 1+1,1-1

and application of (3.11) yields (3.13).

we get from (3.10)

(3.14) Iei -c const. max i 1/1(1 + I-L ht 2i 1~=001)U(-1) 2 2 1/

For the following we assume that

(3.15) f(t) - F(t)exp(- P t a+ 1) ,

holds where F,Fr,F" e C([1,-)) n L((1,-1).

A straightforward calculation gives

(3.16) 111+ 1/2 1 4 const, h r-- lyt t ]+ + (),IEUt+ 1 (t

i£t+
]  

1' [t 1

Markowich (1980a) shows that (3.14) implies

y(t) C (1  i)(IFI + IyI)exp(- 1 t a+)

where c I) is bounded for x e a , Differentiating (3.1) and using (3.16) yields
*2 - 2a t +1

(3.17) 1 41/ 1 c2 1 )( I IF I (Yc xp(- L(
1+ n 1 '=-1 

+  ay+1 t ( (1

where the function t aexp(- t ) takes its maximum over [1,-] at t M)).

c2 (X) and t (1)(M are bounded for x e a . We get2 (1)

IC -0 c I F 11(1 + IyI )(t+1 max h2 +

(3.18)
max (h2t2 exp(- 11 t 1 )(1 + h t a1/2]

-(I+) M 1 ) ma 2 a1 t t+

(IHere t C t ) t holds, where t(1) , max t (1)(A) and c is independent of
Aeo

A • (3.18) gives

-12-4k
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Is 1I 2c 1 (i) 1 + VI)((-  max h£ +i K-0 X,.0( I )I
(3.19)

+ max t exp( -  
halhtE I max(h~h,h, )

Now we require that for some 0 < e 4 e20
(3.20) Ie i 1 4cr 2 1  +y1))," , i 0

K',-0
holds. This is fulfilled if we choose

(3.21)(a) max h < - h(Xlleti), t E 1 t(1 )
X-0(1)I t(1)

and for I > I

V/ taCexp t 1 C (2t1 n -) C C)
2( c % ) X t(1) z % (2)

(3.21)(b) h I h(l,,t) I C t -A 1 3 + 41 t(2)(E) 4 t I t (3)()

2a t+) t2 >A 1)

t/e tz c3exp( (c3) (m+1 ) , Z ' t (3)

where t(3 )(C) > t(2 )(c) is the root of j- -(C+1) exp(-. 1 ) t(3
1  

(Note that
(3 2)TE =(3) 3(a+1) (3))

t(2 )(C) = t (3)() for a = 0.)

This defines upper bounds for the stepsizes at a given point t depending on c

the bound for the global error, and on A, = ReA . These bounds are independent of the

length of the integration interval and increase (in t - t ) exponentially.

We now compute the number of steps N(T,) which is necessary for integration on the
interval t1,T) if h, . h(A1,,t) is chosen. Therefore we write

(3.22) N(T,c)- I + X 1+ 1 I+ 1 1

iei(0) iel(1) i6I(2) ie (3)

where I(n) - {i e 0 Iti e(t (n),t (n+))) where t(0 ) = to = 1 and t(4 ) = T has been

set. Obviously

(t 1) t 1

(3.23) 1 ( )

ie( -13-
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h i+1h ax (hi+l) t(2) dt ,.c( -(3.4) h h C Max h' f
ie(1) ieI(1) h+(1) t(1)

h,+1 2
where c(A) is bounded in n since max - e holds. The same estimate is

ieI i)

easily obtained for I 1 .(
iel( 2 )

For t (3)() ( t 1 T we get

-2.a A1 rl o~

(3.25) hi+ I ) 2 ore3 exp(r 3 )(o1 ) (2 -1)t(3))h

Since t a
+  

- 1 I holds we derive(3)

2a (2 a1-1) 2a I
cu-l-r3 m-3 3

(3.26) hi+ 1 ; 2 a h )2 9 h

and get a bound K ) I from
iel( 3 )

J1 +k-1

(3.27) T > hi
i-il

where I(3) - {j 1,...,j + K-l has been set. Further we use

1 1

h >t C - 1)o,1

such that

2
a 1 1 1

(3.28) h [2 a+ C 311(al oil .)a

-14-



From (3.27), (3.28) we conclude

(3-29) 1 -Cc(A) (I + I
ier( 3 ) Zn-

Altogether this gives

(3.30) N(TC) 4 c(GO + Zn-T

A constant stepsizse algorithm would need

(3.31) Noonst (T,) T

min(,/i3/i
Ta

steps because

maxIl(_X,t0,hconet)Z)iI C const(1 + -J)L hTM)max Z Y I t+ C T
i 2

holds where hoonst = (h) .0  is a sequence of constant stepsizer.

Therefore the stepsize sequence h given by (3.21)(a),(b) is very efficient and the

reason for this is that no condition like h max/hmin C const or even hi+i/A.,i C const is

required. We remark that h equidistributes the local error.

The problem (3.1), (3.2) can be regarded as a model for the decaying solution

components of boundary value problems on 'long' intervals and now we look at the increasing

components, which can be modelled by

(3.32) Z - ta + tof(t), 1 C t C T , a > 0

(3.33) z(T) - i

where w - w + iw e l and n is again a compact subset of {z e CIRez > 0) We again

use the Box-scheme to approximate (3.32), (3.33)

(3.34) z+1 -a (z + ) +
h 1 +/2 (zi/,2z+ ) * t+1/2 fi+t 2, ± ) 0 zN = z

where

0(3.35) to  1 < ti  t0 h0 tN-i tN-2+hn-2 < tN tN-Ih N-I

holds.

-15-
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The solution of (3.34) is given by

(3.36) Z - YiN 1(a,h)z + (H+(W, ,h)f)i

where

(3.37) (H+(w,t, h)f) - I+ , Y (,h), 1 (N-1

i-i~ ~~ 1 1 ~ht+ 1/2

and (H (W,t ,h)f) - 0
+ N N

Since the increasing components are scaled down by the asymptotic boundary conditions

at t = T we disregard the convergence of the zi to z(ti) but we prove a stability

estimate analogously to Lemma 3.2.
N-1i-

Lemma 3.3. Let f - (f 1/) N1 Then for every sequence h - (h )N1

i+ '2 X=1 X L-i

(3.38) I(H+ (t,t ,h)f) 1 4 const. max [If +I(1 + hIt
N i 2 2X) (N-)/ 2

holds for i C N uniformly for to e n

Proof.

IN(H +(,tN h)f) it

N-1 h t,

C max (If ](l + (1_IIh+2-,,, h) "t( / y ()h
1-i(1)(N-1) "2 2 t+1 / t~ a +--ht 2 1,1-1

Application of Lemma 3.1, (3.12), yields:

n(1+ CW,t ,h)f) C c( ) max If + , (I + LI I a+ -i(1)(N-1) 1/ 2 ht+/)

Finally we prove

Lemma 3.4. Assume that ti < t C t (2)(0 and that hi C(A1, ,t E ) for A1 > 0

Then [y i,J_(w,h)l C exp(-c(t - ti))

and c - c(w) is bounded on n

-16-



Proof. Let z - zI+ 'Z zi > 0 *Then

l (z, 1 z 1 2 oxp(-4 z12
1+ 7+7z I1+zI2

holds. This estimate has been used in de IRooq and Weiss (1979]. Therefore for

'0ga1 + w

2~ 1I+.~h + 2~

Since 11 + .2 h t,, 2 4 c(w) for t~ 4 t~ 4 t (c) holds we get

2 L~(wht /2p 1 w i- i-2

lyX ewht4ep- I i'12-xp(-c h 4~ exp (-c(t -tf.

-17-



4. The Case A(t) A.

We consider

(4.1) x' = t' kx + t f(t), 1 (t 4 T , a 0

(4.2) BX(1) - B

(4.3) S(T)x(T) - y(T)
r

where A fulfills (2.4), (2.5), B is an r x n-matrix, 6 e R and f fulfills

(2.13) with V > min  the r+ x n-matrix S(T) fulfills (2.29), (2.30). This simple

case shall be considered as a model for problems where A depends on t

The Box-scheme has the form

(4.4) xi+1  1 xi A . .+ t I f -, i

i / 2 i+I + 
xi + 1/ 2 i+ /2

(4.5) Bx0 " B

(4.6) S(T)xN y(T)
N-I

where the partition A - {t0,tl,***,tNltN} fulfills (3.35) and h - (hi)i. , hi > 0.

A fulfills (2.4). Now we employ the transformation

(4.7) xi - Eui

and get

u2 2
)i+ i  J + E-1 1

i .2 i+ (Ui+l+Ui) + i+ 1 E 1/2, i - 0(1)(N-1)

(4.9) BEu0  B

(4.10) S(T)EuN - y(T)

We want to derive an existence and stability theorem for (4.8), (4.9), (4.10). As de HoOg

and Weiss (1980a) did for the continuous case we split ui into

( u+ }r (b) - 1 f 1/). /r
(4.11) (a) ui u i r (E-I f I/)- 1 }r-

and get employing (3.6) for u- resp (3.36) for u +

-18-
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rr
y +N~ (J+ ,h)0

(4.12) u [iN I ] + r + (H(JttNh)E'f)i

0 yO~- (-j 'h)e F

where for any k x k matrix P whose eiqenvalues have positive real part

,=(P,h) - (k+-h it l/) 1'9+ I/2), a > n, Y (Ph) - 1, n '-I

holds and the operator H is defined as

(4.14)(a) (Hilt 't h)z) - 4 (.t-,h)z-)i z-

0 N ~ (H -3 ,t01 h z i :+

and
N- r +

(4.14)(b) (H+(J tNh)z )i" - hilIti 1 h)( + 2 h1t+I/2) -tto /2z+/2£2'L

14.14)(c) tit (_j.ih)zi - Y h zi(-J",h) (I - ! h t 4 a~ I

where z(z "-'t'hz-) an z= z1 1/ 6- C£ has been set.+

~~Here (H+(J+,tN,h)z+)N = 0 and (H(l-J ,t1 1 hlz-)1 - 0 hold. These definitions make sense

because (I + TJ+) - , (I - J) exist for T > 0

In order to get bounds for the defined difference operators we use the following well

known representation of a matrix function

(4.15) p(P) f rp(A(IP d

rp

where the contour r encloses all eigenvalues of P . is assumed to be analytic.

If all eigenvalues of P have positive real parts we get

(4.16) ien (P,h) f 1 j Y (,h)(Ak-P)_ dA

n,m M w n,mk

where Yn,m is defined in (3.4) and

f (H +(WtNth)(wI - J+)-z )
i 
dw

(4 .17 ) (H (J ,t 'tN h )z)i = 2wr-. (H (_) ,t ,h) I I -

-19-



4I

where r + {z e CiRez > 0}, r c {z 6 CIRez < 0) holds. Since+

(4.18) max I(WI - J+) 1 maxl(XI - J-)-11 4 const.

'a r+ xer_

holds, the estimates given in Chapter 3 can be used because they were formulated uniformly

for -X,w in compact subsets of the left half plane.

By evaluating (4.12) at the boundaries (i - 0 resp i - N) we get the block system

r 1 + 01
BEY (,h BE j

(4.19) 
0 

s+T)E[ I I S(TE[ r_ ] J
I~~ 0,N _-1 -,

BE(H(J,totN hlz-1f)
0  1

Y(T) - S(T)E(H(J,totN h)E-1 f)NJ.

We assume that (2.1), (2.2), (2.3) with A(T) B A has a unique solution for all f's e
r_

C([I,-]), 5 8 R . Therefore (2.15) has to hold which implies that BE is non-
J

singular. From (2.30) we conclude that S(T)E[ 0 ] has a bounded inverse. From (4.16) we

conclude that
ry
r+ +(4.20) Ky (,NI(+ ,h)I 4 const. max IY 0,N-1(,h)l r const.

and
r_

(4.21) IY N-_I(-j ,h)I 4 const. max IY 0,N-(-X,h)I

xer

Now let 1 be the eigenvalue of J- which is nearest to the imaginary axis, such that

Re! - -Amin and take r such that for some small 6 > 0

(4.22) dist(r,!) - 6 and dist(r_ , z e CIRez - 0)) x - 6

N-I
holds. We now choose h -(h 1 0 such that h C h( min-6,c,t ) defined in (3.21).

-20-
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Then
(min6) 4.1

(4.23) max IY (-X,h)l < const(c + exp(- T a )
Le_ 0,N-1 

gIxerr
holds. Therefore, for c sufficiently small and T sufficiently large, y0,N-1 (-J -h)t

can be made sufficiently small such that the block system (4.19) has a unique solution

C+, C_ and

(4.24) max Ix 1 4 const (101 + max I(H(J,totN,h)E -f)iI + Iy(T)I)
i=O(1)N i-0(1)N

holds where const. is independent of e and T

Now we st y(T) - 0.

The local discretization error t / is again defined as

x(t i+l -x(ti) A t
(4.25) ti l - h - : i+,(xi+x) - ti, i/, i - O(1)(N-1)

such that the global discretization error

(4.26) ei - x(ti) - xi

fulfills the discrete boundary value problem
e ~-e)

(4.27) h"+ " . ti+ 1(ei+e ) + t a 112 1. O(1)(,-,)

(4.28) Be 0 0

(4.29) S(T)eN -0

From (4.24) we get

(4.30) max Is I C const. max l(H(J,t ,tNh))il
i=0(1)N i=O(1)N

where I ( -1l 2 has been set.

(4.17) and the Lemmas (3.2), (3.3) yield

(4.31) I(H(J,t,t ,h)X) I 4 const. max [Ict+ l (1 
+ h

ON 1-o (1) (N-)

for some c > 0 . As in (3.16) we get
2[1

(4.32) Il+ 1/2 I 4 const h 2C 1 Ix"'I + Ix"It +
2 t a[ttt1+ 1  (tl EA

assuming that (2.13) holds with F,F',F" e C(I,m)] n L ([I,-]). Since

Ix(t)I < Iy(t)l + fOx(t) - y(t)I ( Iy(t)I + constlS(T)y(T)i

holds where y is the (unique) solution of the 'infinite' problem (2.1), (2.2), (2.3)

-21-
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with A(T) A we get
2 (k -ai6)t+1+ISTy))

(4.33) Ix(t)I c const.(( () + 18)exp( m +
-0 0 ,- +1

This follows from (2.14), (2.28). By using the differential equation (4.1) we derive

2 2a (X n6) cc+1 244 cnst'h2(t. exp( - t ) + T IS(T)y(T))I)

for t i > - t (1) (Amin-6) which is defined in (3.17). We assume that, given an

£ > 0 , hi h(imin- 6,,tI) defined in (3.21). This yields

(4.35) max Ie I < const. (c+T 5+aIS(T)y(T)I)
i-0 ( )N

Using the estimate (2.14) for y(T) gives a bound for the total error

(CX -6) ~l-)
(4.36) max Iy(t)-x 1 4 const.(C + exp(- XI T

i-o(1)N

Again y solves the 'infinite' problem and xi are the solutions of the Box-scheme for

the 'finite' problem on [1,T]. 6 is sufficiently small.

In order to achieve a total occurance of OWt) the choice

(4.37) T = T(c) = (n 6)

is sufficient.

Let us summarize the results.

We solve (4.4), (4.5), (4.6) with a stepsize sequence hi fulfilling

C 6

(4.38) h - sI t I <

-,( min- t Ql
(4.39) h& I C t Ixp a+I ), t I > tc

I

on the interval [I, In -)n)n ] and get the error estimate
sAin-6

(4.40) maxly(ti) - xiI = 0() , + 0
i

-22-
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The number of necessary steps N(c) when equality holds in (4.38), (4.39) is given by

(3.23), (3.24)

(4.41) N(e) - c - , E + 0

which is comparable with the number of steps a constant stepsize algorithm would need for

the integration of a constant interval problem in order to achieve an 0(c) accuracy.

Of course the second term in the error estimate (4.36) can be reduced by adding

gridpoints tE > ( 4'1 In 1)c1 and by forming stepsizes h according to (3.21)(b)I (Amn-06 C
(second and third branch of h ). An estimate for the number of gridpoints in the case

hi - h( min- 6Ct) is given by (3.30).

-23-
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4I

5. The General Linear Case.

The 'infinite' problem (2.1), (2.2), (2.3) shall be approximated by the finite problem

(2.23), (2.24), (2.25). The asymptotic boundary condition S(T) shall fulfill the

regularity conditions (2.29), (2.30).

The Box-scheme for the approximating problem is
x -xi a

(5.1) 1/ 1 i.x/2A( ) X ) i t /2f,1/2, i - 0(1)(N-1)

(5.2) BX0 - ,

(5.3) S(T - y(T)

For the n x n matrix A e C([,-]) is assumed to hold and A(-) - lim A(t) has the

Jordan for J obtained by

(5.4) A(-) = E

and J has the block structure (2.5). Again we set

(5.5) xi - Eui

and define

(5.6) G(t) = E-'A(t)E - J p G(t) + 0 t +

Again we want to derive an existence and stability theorem, but now we use a perturbation

approach and a contraction argument.

We rewrite (5.1), (5.2), (5.3)
(5.7) u+1i J a +1/ti

h 1 ) 1t/2 (ui+uli) /2 (ti, 1)(ui.1*ui ) + t 1/2 E 1/2

i - o111N-1)

(5.8) BEu 0

(5.9) S(T)EuN - y(T)

According to Chapter 4 the general solution of (5.7) can be written as

Yi,N I(J ,h) 0

Lr _,h)e- -(5.1()) 0y -(.M J

+ (H(J,t1 lt,,h)ui + (H(J,t ,tN h)E 1f) i

-24-
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1/ . p U + a, (a )/2N-1

1+1.2,+ (/2 X+ 1 A,1-

has been set. e e C and & e C hold.

From (4.17) and the Lemmas 3.2 and 3.3 we get

max I(H(J,tl,tN,h)Gu) I (
L-I( I

(5.12)

4 const. GI max (1 + hitt+1) hla- Ou I[tiltN I-I(1)(N-.1) 2/ -I( I)N

We choose T - tq = ( +1) Zn and ht 4 h -6, £,t ) defined in (3.21).
imin- £"

Xmin > 0 is again the modulus of the real part of that eigenvalue of A(-) which is

closest to the imaginary axis of all eigenvalues of A(-) with negative real part and

6 > 0 is sufficiently small.

Since h;(le,t +1) h(X 1,,tI ) we derive from (3.21) that h(',i 6 ,C tN-)

such that 1 +Sh t const holds. We define the operator
2 1 t+ 1/2

(5.13) H(h,tI 'tN) : C
(N- 1) - C l% 'z+ I)

such that for x en(N), x - ( +1/2 1_
(H(J,tI, *t,h)x)

(h,tlltN )X(5.14) liht~Nx- J
(H(J,t ,tNh)x)N

holds. From '5.12) we get

(5.15) IH(h,tl,tN)GI ( const. IGitltNI

where 1.1 denotes the max-norm for vectors in the respective CJ  resp. the associated

matrix norm. Therefore the operator
(5.16) 1 - (h,ti'tN)- : Cn(N-I+1) Cn(N-I+1)

is invertible for tI < tN sufficiently large. We define

-25-



4r

r + h
+ J h)0

IN_ 
J

0 N-I(-J ,h)eJ

such that [

uI

u1+1

N - (I-H(ht 6tN )G)-Y+,N (J ,h)C+ + (I-H(h,tf,tN )G) Y I,N(-Jh)C_ +

UNi + (I-H(h,ti.tQ) liZ-1f

holds. In order to obtain u0 ,uI...,u I1 the difference equation (5.7) has to be solved

backwards with given u, h 't a )-
Therefore h0 ,...,hl_ have to be chosen such that (I - t 1,A(tl+ ,)) exist

for L -0(i)(I-1). From this and (5.18) we get

++(5.19) ui . zi 6 + ZiC - + zi(f) , i =O(MN

where Z +  is a n x r , Z- is a n x r matrix and ziM e Cn
i i zife

The block system

F E 0 1 f B BZZ f(5.20) L +E E ()-sT:~
S(T)EZN S(T)EZ, () SMNNf

results by evaluating at the boundaries i 0 reap i - N and by using (5.8), (5.9). we

set

z+
z +.Z

(5.21) (a) Z
+  (b) Z -
I,N m I,N

zN zN

From (5.18) we get
i + +

(5.22) ZN (H(h tt)G) Y (J ,h)

and since 1I(h,tIt)) ( corst as £ 0

-26-
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IZ -Y +(J+,h) I

( 5.23) ¥Yt; r 1 (j+, h)(+

( const. max IG(tL1LL 01] 2 1 01(J h J,

-c (T-t + )

4 const. max (IG(t c e +)•

i-I( 1)(N-l)22

This follows from (4.12) and Lemma 3.4. It is easy to check that the right hand side of

(5.23) converges to zero as T + - (e * 0). Therefore
+

(5.24) % - [ 0 + o(1) , + 0

follows and

s(T)ZZ- S(T)N[ 0 ] o(1)

is nonsingular for e sufficiently small because of (2.30) and the matrix in the (1.1)

position of (5.20) is bounded as e + 0

we conclude from (5.18)

(2.25) Z I, - H(ht .t)GZ + y (-Jh)

In Chapter 2, (2.16) it was noted that the general solution of the homogenous problem

u- t,(J+G(t))u

i u 6 C(([I'd])

can be written as

(5.26) *_(t) - ((I - HG)-ls(.)[ 10 ])(t) , t )
r

where the solution operator H is defined in (2.11) and *(t) is as in (2.9). We get

(5.27) *_(t) - (HG$)(t) + *(t)[ 0 3 t y
r

and define the vector INfor 'r -

(5.28) +INI

t_(tN )  (HG*)(t N ¢(N) 0

(HG*-) I,N fI,N

-27-
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Subtracting from (5.25) we get

(5.29) ZIN - ' -N" H(htI'tN)GZIN - (HG*-)I,N + Y ,N(-J ,h) - I,N

and

(5.30) ZIN - *ZI,I N - 'I,
N
) - [(HGtD)IN - N(h'tI'tN)G,N]

+ i.(-jh) -01

follows. This gives

ZIN - *I,N " (I - H(h,ti,tN)G) (YIN(-Jh) - I,N

(5.31)

- (I - H(h,tI,tN )G) C(HG* )I,N - H(h,tItN)Gjj,)"

From Chapter 4 we conclude that

(5.32) MYIN(-J-,h) - +,N' = 0(0) , £ .0

and since (HG*_)(t) is the solution of the problem

V, - taJv + tG(tl*_(t)

[ 0 ]1 V(t ) - 0

v 0 C([ti ]

we get assuming that A e C([1,]); A', A" e C((1,-)) n L ([1,-])

(5.33) I(HG*_)IN - H(h,tI tN)GIN I - 0(c) £ 0 0

and therefore

(5.34) IZIN, - *INI 0(C) , £ + 0

follows. By continuation (5.33) holds with I - 0

We now assume that the 'infinite' problem (2.1), (2.2), (2.3) is uniquely soluble for
r

every 0 e R -, f e c([1,]) such that (2.18) holds. Then the matrix in the (1.2)

position of (5.20) is nonsingular for C sufficiently small and its inverse if bounded as

E + 0 . The matrix in the (2.2) position is bounded and therefore the block system (5.20)

is uniquely soluble for c sufficiently small and we get the stability estimate

(5.35) max Ix I 1 const(I| + |f Sf1,T] + |y(T)I).

i-0(1)N ,T

i-28-
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By Proceeding as in Chapter 4 we get

Theorem 5.1. Assume that A e c([l,), A', A" e c([1,-)) n LU([1,.]) and that f

fulfills (2.13) with F, F', P" e c(ui,-)) n L([1,-]). Let for some c sufficiently

small

(5.36) T(e) = tO c I(n -)a' 1

hold with some fixed small 8 and assume that

(5.37) h 1 4-O for ti 4 c 0 
> 0

Si a+ i c0 )
(5.38 hi , tjexp( 1 ,  t i  T €

hold for some fixed y sufficiently large. Then if the matrix (2.18) is nonsingular the

Box-scheme (5.1), (5.2), (5.3) is uniquely soluble for c sufficiently small and

(5.39) max Ixi - Y(ti)I - 0(c)
i-0 (1 )N

holds for y(T) - 0 .

If equality holds in (5.37), (5.38) the number of steps N - N(e) fulfills

(5.40) N(E) - CI -L , E + 0

The condition number of a nonsingular A is defined by

(5.41) x(A) = EAIIA- II

Then the condition number of the difference operator Lh  (given by (5.4), (5.5), (5.6)

fulfills the estimate

(5.42) x(L h ) 4 const -. const. N()

if equality holds in (5.37), (5.38).

This holds since SLn ( const. -- and because of the stability estimate (5.35).

(5.42) is a very moderate condition number and therefore (5.4), (5.5), (5.6) can be

safely solved (by partial pivoting usinq SOLVEBLOCK(de Boor and Weiss (1980)).

-29-
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6. Nonlinear Problems.

We consider the 'infinite' problem

(6.1) y. - tar(try), 1 4( t < -, a )o 0

(6.2) b(y(1I) - 0

(6.3) ye C( [I,])

and the Sox-scheme

(6.4) Xi+l-X I t a 12f( / x~l) ()N1
hi ti+l2t i+ 1/2  (ii ,

(6.5) b(x0 ) . 0

(6.6) S(T)xN = S(T)y (-)

where T - t. holds. The asymptotic boundary condition S(T) is considered with regard

to Chapter 2.

As mentioned in Chapter 2

(6.7) f(.,y(.)) = 0
y*( *

has to hold. We now assume that there is an isolated zero y and that f (-,y (.))Y

has the Jordan form J obtained by

(6.8) fy (,y (11 = EJE
-

where J fulfills (2.5). Moreover we assume

(6.9) f e c2 cC (1,y ()); f(t,y (.)) = ( +1
r

(6.10) b: So + R b,b are locally Lipschitz continuous in Rny
y*( *

and that the problem (6.1), (6.2), (6.3) has an isolated solution y (t) y () as

t . - . The isolatedness means that the linearized problem

z, = f (t,y*(t))z
y

by(y*l())z(1) = 0

z e C((1,-])

has only the trivial solution z 0. Then we conclude from de Hoog and Weiss (1980a) that

the approximating problem

(6.11) x, - t fit,x)

(6.12) b(x(1)) - 0

*

(6.13) S(T)x(T) - S(T)y (c)
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with (2.29), (2.30) are locally (around y*(t)) uniquely soluble for T sufficiently large

and
*

(6.14) Ix - Yl[1,T] C const.IS(T)(y(T) - y (-))I

hoice. An estimate for S(T)(y(T) -y (-)) can be obtained from (2.21). Possible choices

for S(T) are discussed in Lentini and Keller (1980).

1

Now we choose t,-T in for e sufficiently small and apply the

nonlinear stability theory given in Keller (1975) with e as a parameter. The result then

follows from the stability estimate (5.35) for linear problems and we merely state it in

Theorem 6.1. Under the given assumption the Box-scheme is convergent for e + 0 to the

locally unique solution of (6.4), (6.5), (6.6) if stepsize sequence h fulfilling

(6.15) hit IC c 0 , t I 1 4 y

(6.16) h 2 C rt t + 1 y < t, < T(n)

is chosen. The estimate

(6.17) max Iy(t1 ) - x i - 0(c) , + + 0
i-0(1)N

holds. The Newton procedure for (6.4), (6.5), (6.6) is quadratically convergent for

starting values in a sphere

Y(t 0)

K-{ (
N

+
I

) l
I

x  I &I

Y(tN)

where is independent of •
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7. Algorithm

A difficulty that might arise is that T(C) - £n )1 is rather small-6)

-4 -8 (k.-8
for reasonable e's (10 C C - 10-). For example assume a - 1, X-in  2, c - 10

Then T - 4.

If y(t) has not 'reached' its asymptotic state at T * 4 no good approximation by

the finite interval problem posed on 11,4] can be expected. However a significant increase

of T (such that y(T) is reasonably close to y(w)) which corresponds to an enourmous

decrease of e would imply a large increase in the amount of labor since N(e) =

0 ( C- 1/2 1.

A reasonable way to overcome this difficulty is to set

1

(7.1) T(c) I - n -5 ) &
(X6in ) )

where

(7.2) K= max I(y(t) - y(m))exp(
m n  t t

te 
l ] 

,..

has been set.

Then

(7.3) ly(T(c)) - y(.)l 4 c for all £ > 0

The mesheize sequence (6.15), (6.16) can still be used on the whole interval [1,T(E)].

The error estimate (6.17) takes the form

(7.4) max lxi - Y(ti)I = 0(KC), C + 0
i-o(1 )N

and O() would still be an O(c 1/2).

In the case that the function f , which sets up the differential equation, is

independent of t , the choice

(7.5) S(T) E S n [I+ ,01 -

(and y(T) - y - Sy(-)) implies

(7.6) Ox - Y'f1T] ( const ly(T) - v(-) 
2

(see Lentini and Keller (1980)). Therefore we can choose
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4I

(7.7) T(C) 1/2 "- - In
mmn

and (7.4) still holds.

A way to construct an adaptive code based on the given theory is the following.

At first choose a T so large that y(T) is reasonably close to y(-). This might be

done by using physical information on the solution of the infinite problem. Then choose a

coarse grid on 11,T] such that the mesheizes increase exponentially as t + T • The

solution of the equations (6.4), (6.5), (6.6) gives an initial guess (x0 ,..,XN). Now we

calculate

(7.8) max I(xi - y())xp(Ami
n "

i-O(1 )N
Here 6 should be an input parameter. Then we set y - tI  (for the meaning of y see

Theorem 6.1) such that

(7.9) max Ix y(-)l Ix- y(-) > for some j C I=i(1)Hlx y(') ' () - frsm

A-IMlN it1
where M is also an input parameter.

For i - 1(1)(I-I) we calculate the first order term of the local error L. using
1

the xi's as Lentini and Pereyra (1977) did. On [1,t 1 ] we define an equidistributing

mesh proceeding as in the just cited reference given an e > 0 . On It., T()1 where

T(e) is given by (7.1) reasp. (7.7) with set for K , we choose the meshsizes hi as

hi t exp( tmn ,

= T 
r 

- ti

and solve (6.4), (6.5), (6.6) on (1,T(0)1 using the constructed mesh.

A standard error estimation algorithm then checks whether a given accuracy has been

achieved. If yes then the algorithm stops, if not we calculate t, *NEW from the just

obtained solutions of the Box-scheme and calculate a new grid with cNEW - c/2 separately

on t[iYNEW], (YrE , T(rNLW )1 as in the first iteration.

This interative procedure stops as soon as the required accuracy is obtained.

Numerical experiments will be reported in a subsequent paper solely concerned with

computational aspects of 'infinite' boundary value problems.
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